Chek Lap Kok Airport

Project Overview

Chek Lap Kok Airport was built on an airport platform (12.5 km²) with 75% of the area on reclaimed land with the remaining 25% formed by excavating two existing granite islands. The construction comprised the placement of approximately 197 million m³, with 70 million m³ of that being hydraulically placed dredged sand fill. The placed fill thickness varied from 10 to 25m.

Aerial view of Chek Lap Kok Airport on a man-made island, showcasing runways, terminal buildings, and nearby infrastructure. Surrounding water and distant land highlight its coastal location.

Landpac's Solution

Landpac employed High Energy Impact Compaction (HEIC) to optimise the soil’s engineering properties. This technique was crucial for increasing load-bearing capacity, reducing settlement potential, and ensuring overall soil stability, especially for the southern runway area where the consolidation settlement was lower than expected.

Challenges

The project faced challenges with the underlying soil, which included dredged marine sands and decomposed granite, overlying compressible in-situ marine deposits. Inadequate compaction in the reclaimed levels posed risks to the structural integrity and safety of the airport.

Application of HEIC

Runways and Taxiways: HEIC was critical in improving the subgrade conditions, enhancing soil density and strength to withstand heavy loads.

Terminal Buildings and Infrastructure: HEIC provided a stable foundation to support the terminal buildings and associated infrastructure.

A geological map of Chek Lap Kok Airport displays land types with a key featuring symbols for reference points, rhyolite dykes, granites, reclamation areas, superficial deposits, fault lines, and coastlines. Lantau and Chek Lap Kok Islands are clearly labeled.

Benefits

Enhanced Bearing Capacity: HEIC effectively increased the soil’s load-bearing ability, crucial for airport operations.

Reduced Settlement: Minimized potential settlement issues, ensuring operational efficiency and safety.

Improved Soil Stability: Increased shear strength of the soil, essential for the stability of the airport’s infrastructure.

Cost-Effectiveness: Accelerated the compaction process, resulting in time and cost savings.

A yellow road roller is parked on a sandy area under a blue sky with scattered clouds, near Chek Lap Kok Airport. In the background, two more construction vehicles are visible in the distance on the sand, as they contribute to the bustling travel hub's ongoing developments.

Monitoring & Verification

To ensure compliance with compaction requirements, plate load tests were conducted. The variability of the subgrade material necessitated rigorous QA procedures, with the initial use of a 200T Porter Super Compactor for proof rolling, later replaced solely by the Impact Compactor.

Through Landpac’s expertise in HEIC, Chek Lap Kok Airport successfully addressed its soil compaction and stability challenges, laying a robust foundation for its infrastructure.

Client: Hong Kong Provisional Airport Authority

Principal Contractor: Downer-Paul Y-McAlpine JV

Ground Improvement Contractor: Landpac

Latest news​

A green tractor with a yellow attachment is parked on a large, dusty field under a clear blue sky, ready for proof rolling. Trees and a few buildings are visible in the distant background.

Understanding High Energy Impact Compaction (HEIC)

High Energy Impact Compaction (HEIC) revolutionizes ground improvement with its ability to achieve superior soil density and stability. Unlike traditional methods, HEIC uses advanced rollers and compaction technology to penetrate deeper soil layers, addressing heterogeneities and enhancing load-bearing capacity. Ideal for mining, dredging, and large-scale earthworks, HEIC reduces project timelines, lowers costs, and promotes sustainability. Discover how Landpac’s innovative solutions deliver efficient and environmentally responsible results for heavy-duty projects.

Read More

Planning for your next project?